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Static disorder in a noninteracting gas of electrons confined to two dimensions can drive a continuous
quantum �Anderson� transition between a metallic and an insulating state when time-reversal symmetry is
preserved but spin-rotation symmetry is broken. The critical exponent � that characterizes the diverging
localization length and the bulk multifractal scaling exponents that characterize the amplitudes of the critical
wave functions at the metal-insulator transition do not depend on the topological nature of the insulating state,
i.e., whether it is topologically trivial �ordinary insulator� or nontrivial �a Z2 insulator supporting a quantum
spin Hall effect�. This is not true of the boundary multifractal scaling exponents, which we show �numerically�
to depend on whether the insulating state is topologically trivial or not.
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I. INTRODUCTION

It has long been known that the metallic state of a two-
dimensional gas of noninteracting electrons is robust to suf-
ficiently weak static disorder when time-reversal symmetry
�TRS� is preserved but spin-rotation symmetry �SRS� is
broken.1 Increasing the disorder strength relative to the
Fermi energy induces a continuous quantum �Anderson�
transition to an insulating state. The bulk properties of this
metal-insulator transition have been well characterized nu-
merically when the insulating state is topologically trivial.2–4

It has been realized only in the last few years that there
are two distinct classes of time-reversal-invariant �band� in-
sulators: Z2 topologically trivial and nontrivial insulators.
The Z2 topological insulator in two dimensions supports a
helical edge state which is a Kramers pair of counterpropa-
gating gapless excitations.5,6 This helical edge state is re-
sponsible for the quantum spin Hall �QSH� effect: An elec-
tric field induces a spin accumulation on the edges transverse
to the direction of the electric field.5,6 The QSH effect has
been observed in HgTe/�Hg,Cd�Te quantum wells.7,8 Just as
edge states in the integer quantum Hall effect are stable
against disorder, the helical edge state in a Z2 topological
insulator survives impurity scattering as long as the bulk
energy gap is open and the TRS is preserved.9,10 This implies
that, even in the presence of disorder, time-reversal-invariant
insulators can be classified into two distinct classes, Z2 topo-
logical and nontopological �ordinary� insulators, according to
the presence or absence of a helical edge state.

It is then natural to ask11 whether the transition between
the metallic and the QSH insulating states belongs to a uni-
versality class different from that of the �ordinary� two-
dimensional symplectic universality class discovered in Ref.
1. It was shown in Ref. 12 that the answer is negative for the
scaling exponent � of the diverging localization length upon
approaching the Anderson transition from the insulating
sides. In this paper, we show numerically that there are
boundary multifractal scaling exponents13 that are sensitive
to the presence or absence of a helical edge state on the
insulating side of the transition.

We review in Sec. II the definition of the two-dimensional
network model introduced in Ref. 12 that encodes the tran-
sition between the metallic and QSH insulating states, as
well as the transition between the metallic and the ordinary
insulating states in the two-dimensional symplectic univer-
sality class. The latter transition is conventionally studied
using the two-dimensional tight-binding model introduced in
Ref. 2, which is also briefly reviewed. The phase diagram for
the network model is reviewed, and the relevance of bound-
ary conditions to the presence or absence of helical edge
states is discussed in Sec. III. The dependence of the local-
ization length on transverse boundary conditions in quasi-
one-dimensional geometries is discussed in Sec. IV. Bound-
ary multifractal scaling exponents in the network model are
calculated numerically in Sec. V. Corner multifractal scaling
exponents in the network model are investigated analytically
in Sec. VI. We conclude with Sec. VII.

II. NETWORK MODEL

Our starting point is a network model introduced in Ref.
12 to capture the Anderson transition between the two-
dimensional metallic and topological insulating states. The
network model is constructed by decorating an underlying
square lattice of sites and single bonds connecting nearest-
neighbor sites with the elementary building blocks from Fig.
1. By taking advantage of the bipartite nature of the square
lattice, one colors all sites from one sublattice in red and all
sites from the complementary sublattice in blue. One then
replaces any red �blue� site with a node S �S�� represented
graphically with an open red �blue� circle. Second, any single
bond connecting a pair of nearest-neighbor sites of the
square lattice is replaced with a pair of directed links of
opposite orientation. On the links, the spin-1/2 is a good
quantum number. A link represented by a full line carries the
spin-1/2 quantum number �=↑. A link represented by a
dashed line carries the spin-1/2 quantum number �=↓.
Third, the four pairs of directed links that meet at a node are
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labeled according to the rules in Figs. 1�a� and 1�b� if the
node is of types S and S�, respectively. With the conventions
in Figs. 1�a� and 1�b�, either node defines a 4�4 scattering
matrix S that preserves TRS but breaks SRS and can be
represented by

�
�1↑

�o�

�2↓
�o�

�3↑
�o�

�4↓
�o�
� = S�

�2↑
�i�

�1↓
�i�

�4↑
�i�

�3↓
�i�
�, S = � r�0 tQ

− tQ† r�0
� ,

r = tanh X, t =
1

cosh X
,

Q = i�0 cos � sin �1 + �1 sin � cos �2 − �2 sin � sin �2

+ �3 cos � cos �1. �2.1�

Here, the four matrices �0,1,2,3 act on the spin-1/2 compo-
nents with �0 as the unit 2�2 matrix and ��1 ,�2 ,�3� as the
three Pauli matrices. Moreover, 0�X	
, 0��	� /2, 0
��1	2�, and 0��2	2�. TRS is represented by the con-
dition

S = ��2 0

0 �2
�ST��2 0

0 �2
� . �2.2�

The matrix S is the most general 4�4 unitary matrix that
describes a quantum tunneling process between two Kramers
doublets that preserves TRS but can break SRS. When r=1
and t=0, S is reduced to the unit matrix, and there is no
tunneling between one Kramers pair ��1+�2� and the other
pair ��3+�4�. The tunneling with �without� a spin flip occurs
with the probability t2 sin2 � �t2 cos2 ��. Although S is pa-

rametrized by four real parameters, only X and � matter as �1
and �2 can be absorbed in the overall phase windings that the
Kramers doublets acquire when traversing along links con-
necting nodes.

Disorder is introduced in the network model by assuming
that the phases of Kramers doublets on the links and the
phases � on the nodes are independently and identically dis-
tributed. The distribution of the link phase of a Kramers
doublet is uniform over the interval �0,2��. The distribution
of � is sin 2� over the interval �0,� /2�. We are left with one
parameter X in the network model that controls the scattering
amplitude at every node. The parameter � in the network
model plays the same role as spin-orbit interactions �of
Rashba type� in a random tight-binding Hamiltonian belong-
ing to the two-dimensional symplectic symmetry class,
whereas the parameter X plays the role of the Fermi energy.

In order to distinguish the topologically trivial insulating
phase from the QSH insulating phase, we shall compare the
results that we obtained from the network model against the
ones that we obtained from a two-dimensional tight-binding
model introduced in Ref. 2, the so-called SU�2� model. The
SU�2� model is a microscopic random tight-binding Hamil-
tonian with on-site randomness �box distributed with the
width W� and with random hopping amplitudes such that the
spin-dependent hopping amplitudes between any pair of
nearest-neighbor sites of a square lattice are distributed so as
to generate the SU�2�-invariant Haar measure. It captures the
transition between a metallic and a topologically trivial insu-
lating state in the ordinary two-dimensional symplectic uni-
versality class. In the SU�2� model, the Fermi energy plays
the role of the network parameter X for a fixed and not too
strong W.

III. PHASE DIAGRAM AND BOUNDARY CONDITIONS

On symmetry grounds, we expect that it is possible to
drive the network model through two successive Anderson
transitions by tuning X. Indeed, this was shown to be the case
in Ref. 12. For any X bounded by the two critical values
Xs	Xl �Xs=0.047�0.001, Xl=0.971�0.001; the subscript s
�l� stands for small �large�� the network model is in a metal-
lic state, while for X	Xs or for Xl	X it is in an insulating
state. It was shown in Ref. 12 that the localization length, a
bulk property of any one of the two insulating phases, di-
verges with the exponent �	2.7 of the ordinary two-
dimensional symplectic universality class2 upon approaching
the mobility edge �either Xs or Xl�. The resulting phase dia-
gram is shown in Fig. 2. The conclusions from Ref. 12 were
reached by studying numerically the network model in a strip
geometry with periodic boundary conditions �PBCs� im-
posed in the transverse direction.

Here, we shall depart from Ref. 12 by imposing reflecting
boundary conditions �RBCs� in the transverse direction in

FIG. 1. �Color online� Elementary building blocks of the net-
work model. A square Bravais lattice with nearest-neighbor sites
connected by bonds underlies the construction of the network
model. Any red site of one of the two sublattices of the square
lattice is replaced by a red circle S �a node of type S� with the four
bonds meeting at the site replaced by four pairs of directed links
numbered according to the rule shown in �a�. Any blue site of the
complementary sublattice of the square lattice is replaced by a blue
circle S� �a node of type S�� with the four bonds meeting at the site
replaced by four pairs of directed links numbered according to the
rule shown in �b�. Observe that a clockwise rotation by � /2 turns
�a� into �b�. The directed links represent incoming or outgoing plane
waves with a well-defined projection of the spin-1/2 quantum num-
ber along the quantization axis. Each pair of links replacing a bond
represents a Kramers doublet of plane waves. Each node S or S�
depicts a scattering process represented by a 4�4 unitary matrix
defined in Eq. �2.1� that preserves TRS but breaks SRS.

FIG. 2. �Color online� Phase diagram for the network model
after Ref. 12.
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the strip geometry such as in Fig. 3 and 4�a�, for example.
Reflecting boundaries for the network model that respect
TRS are defined by choosing a set of nodes and amputating
two pairs of links �one labeled by an odd integer and the
other by an even integer in the convention of Fig. 1� attached
to any of these nodes in a consistent fashion; i.e., no node
can be the end point of an odd number of pairs of links. A

boundary node is depicted by a colored semicircle, and its
scattering matrix S is always represented by a unit 2�2
matrix, regardless of its index S or S�. Three examples of
reflecting boundaries defining a strip geometry are shown in
Fig. 3. From the fact that the scattering process in Fig. 1�b� is
obtained by a clockwise rotation by � /2 of the scattering
process in Fig. 1�a� follows the important property that a
horizontal boundary passing through nodes of type S is
equivalent to a vertical boundary passing through the nodes
of type S� and vice versa.

In the following discussions, we shall focus on the critical
point X=Xl and its neighboring insulating phase. Imposing
RBCs, we shall see that the insulating phase at XXl in the
phase diagram from Fig. 2 can acquire a topological attribute
in that it supports a single Kramers doublet that is localized
in the direction transverse to the boundary but is delocalized
along the boundary, i.e., a single Kramers degenerate pair of
edge states.

The refined phase diagram in Fig. 5 is depicted for
X�Xl according to the presence or absence of edge states in
the insulating phase at XXl. Identifying helical edge states
can be done in a pictorial way in the perfect reflection limit
X→
 provided we assume continuity of the insulating
phase. In the limit X→
, the scattering at the nodes S and
S� reduces to the glancing events depicted in Fig. 6. As a
corollary, Fig. 3 simplifies to Fig. 7. We thus see two Kram-
ers doublets propagating along the upper and lower bound-
aries in Fig. 7�a�, none in Fig. 7�b�, and one in Fig. 7�c�. The
refined phase diagrams from Fig. 5 then follow assuming
continuity.14 In Secs. IV, V, and VI we go beyond the picto-

FIG. 3. �Color online� Quasi-one-dimensional network model
with reflecting boundaries. �a� The upper and lower boundaries pass
through the nodes S�. �b� The upper and lower boundaries pass
through the nodes S. �c� The upper and lower boundaries pass
through the nodes S and S�, respectively. Transverse periodic
boundary conditions are possible only in geometries �a� and �b�, for
which the transverse width is here M =2.

FIG. 4. �a� The network model on a square with L2 nodes of
type S and L2 nodes of type S� �a node on a boundary is counted as
1/2� is wrapped around a cylinder by imposing RBCs along the x
direction and PBCs along the y direction. �b� It is wrapped around a
torus by imposing PBCs in the x and y directions.

(a)

Metal

Metal

Metal

(b)

(c)

X

X

X

l

l

l

on lower boundary only
Insulator with a helical edge state

Insulator with helical edge states
on upper and lower boundaries

X

X

X

Ordinary Insulator
(no helical edge state)

FIG. 5. Phase diagram of the network model of the quasi-one-
dimensional geometries in Figs. 3�a�–3�c� at X�Xl. The choice of
the boundary decides whether the insulating phase at XXl has
helical edge states.

FIG. 6. �Color online� Scattering in the reflective limit X→

for nodes �a� S and �b� S�.
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rial argument in Fig. 7 and study the critical properties at the
Anderson metal-insulator transition in a quantitative fashion
with an emphasis on the boundary and corner multifractal
scaling exponents at criticality.

It is important to note here that we may consider the in-
sulating state in Fig. 5�a� as a Z2 topological insulating state
because of the presence of a helical edge state along the
boundaries. Similarly, we may identify the insulating state in
Fig. 5�b� with a Z2 topologically trivial, ordinary insulator.
These observations indicate that in the network model for-
mulation, the Z2 topological nature of an insulating state can
be determined by appropriate choice of reflecting boundary
nodes, even without changing the control parameter X. This
is very similar to the situation in the Chalker-Coddington
network model15 for an integer quantum Hall plateau transi-
tion, in which an insulating state may or may not have an
edge state for a given value of quantum tunneling parameter
at nodes, depending on the location of reflecting boundary
nodes. An insulating state with an edge state can be regarded
as an integer quantum Hall state. We also note that we may
attribute this dependence of the topological nature of an in-
sulator on the reflecting boundary conditions in network
models to our freedom to give any topological character to
the vacuum outside the insulator.

IV. NORMALIZED LOCALIZATION LENGTH

Supporting evidence for the phase diagram in Fig. 5�a�
can be extracted from the dependence on M of

��i��X,M� 
 ��i��X,M�/M �4.1�

in the geometry of Fig. 3�a�. In Eq. �4.1�, the ith normalized
localization length ��i��X ,M� is the ratio between the ith
localization length ��i��X ,M�, which is given by the inverse
of the value of the ith smallest pair16 of the Lyapunov expo-
nent of the transfer matrix, and the width M in either one of
the geometries in Figs. 3�a� and 3�b�.17 The transfer matrix
for the strip geometries can be constructed in a similar man-
ner as in the cylinder geometry �transverse PBCs�.12

Figure 8 shows the dependence on X of ��i��X ,M� with
i=1 and i=2 for the values of M =4, 8, and 16 in the geom-
etry of Fig. 3�a�. Also shown in Fig. 8 is the dependence of
��1��X ,M� for transverse PBCs. The existence of the critical
points Xs and Xl is signaled by the independence of
��1��Xs,l ,M� from M. Imposing transverse PBCs reduces the
finite-size corrections and allows a more accurate measure-
ment of Xs and Xl, the dashed vertical lines in Fig. 8.12 When
Xs	X	Xl, ��i��X ,M� increases with M for both transverse
RBCs and transverse PBCs, as expected from a two-
dimensional metallic state. This trend is reversed in the in-
sulating phases for transverse PBCs, as expected from a two-
dimensional insulating state. However, when Xl	X and
transverse RBCs are chosen, ��1��X ,M� remains an increas-
ing function of M, whereas ��2��X ,M� becomes a decreasing
function of M �the inset shows this more clearly with its
logarithmic vertical scale�. This opposite dependences on M

FIG. 7. �Color online� Large X limit of the quasi-one-
dimensional network model with the reflecting boundaries from
Fig. 3.

FIG. 8. �Color online� The dependence on X of ��1��X ,M� in the
geometry of Fig. 3�a� with transverse RBCs is shown for M =4 ���,
8 ���, and 16 ���. The dependence on X of ��2��X ,M� with trans-
verse RBCs is shown for M =4 ���, 8 �+�, and 16 ���. The depen-
dence on X of ��1��X ,M� with transverse PBCs is shown for
M =4 �blue dashed curve�, 8 �green dotted curve�, and 16 �red solid
curve�. The vertical dashed lines identify the critical points Xs and
Xl deduced in Ref. 12 when transverse PBCs are imposed. The inset
displays the same data points with a logarithmic vertical scale.
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of ��1��X ,M� and ��2��X ,M� is the signal that each of the
upper and lower boundaries supports a single Kramers dou-
blet that would be extended along the boundary18,19 were it
not for the existence of a finite tunneling amplitude that: �i�
couples the two Kramers doublets �edge states� residing near
the two opposite boundaries and �ii� is exponentially small in
M when M is much longer than the mean free path. The
dependence on M of ��1��X ,M� with transverse RBCs when
X	Xs is the one expected from an ordinary insulating state.
All together, these observations point to the refined phase
diagram shown in Fig. 5�a�; i.e., the insulating phase is un-
conventional when Xl	X due to the presence of a single
Kramers doublet of edge states per boundary that becomes
delocalized along the boundaries in the limit M→
.

The M-independent normalized localization length at the
Anderson transition is nothing but the normalized correlation
length �c at a generic continuous phase transition in the
theory of critical phenomena. This quantity is known to de-
pend on the choice of the transverse boundary conditions.20

First, the value

��PBC��Wc� = 1.844 � 0.002 �4.2�

of the normalized localization length at the Anderson transi-
tion was calculated in Ref. 2 for the SU�2� model with trans-
verse PBCs. It should here be compared with the values

��PBC��Xs� = 1.81 � 0.01,

��PBC��Xl� = 1.82 � 0.01 �4.3�

calculated in Ref. 12. Second, we have extended the calcu-
lation in Ref. 2 for the SU�2� model in which transverse
PBCs were used to the case in which the vanishing of the
wave functions along the transverse boundaries is imposed, a
situation that we shall refer to as fixed boundary conditions
�FBCs�, and found �see Fig. 9�c��:

��FBC��Wc� = 1.50 � 0.03. �4.4�

This value should be compared with

��RBC��Xs� = 1.49 � 0.02 �4.5�

for the network model with transverse RBCs �where we can
also deduce the right-hand side from Fig. 9�c� for which it is
the network model at the critical point Xl in the geometry of
Fig. 3�b� that is investigated; Fig. 9�a� shows insulating be-
havior of ��1� for XXl�. Evidently, values �4.4� and �4.5�
agree within their error bars �in support of our identification,
made at the end of Sec. III, of the insulating phase without a
helical edge state with a Z2 topologically trivial insulator� but
clearly differ from values �4.2� and �4.3�. Finally and more
importantly, there is a rather large asymmetry

��RBC��Xl�/��RBC��Xs� 	 4.8 �4.6�

for the network model with transverse RBCs in the geometry
of Fig. 3�a�.

Finite-size scaling in Fig. 9�c� clearly shows that the scal-
ing function obtained for the SU�2� model with transverse
FBCs is identical to that for the network model at X=Xl in
the geometry of Fig. 3�b�. These scaling functions are there-
fore a universal property of the critical point between a me-

tallic phase and an ordinary insulator. From this finite-scaling
analysis, we also obtained the critical exponent � of the di-
verging localization length. At the critical point Xl of the
network model, we found �=2.88�0.04. Again, this should
be compared with the critical exponent � of the SU�2� model
with transverse FBCs for which we find �=2.85�0.06. Both
exponents agree with each other within their error bars; they
are also consistent with the exponent 2.7���2.8 obtained
with transverse PBCs.2,12 This implies that the exponent � is
a bulk property independent of boundary conditions
�whereas the scaling functions are dependent on the trans-
verse boundary conditions�.

The network and SU�2� models in a quasi-one-
dimensional cylinder geometry at criticality are indistin-

FIG. 9. �Color online� �a� Dependence on X of the normalized
localization length ��1��X ,M�
��X ,M� for the network model in
the quasi-one-dimensional geometry of Fig. 3�b� with transverse
RBCs and M =4,8 ,16,32,64. �b� Dependence on the dimension-
less disorder strength W of the normalized localization
length ��1��W ,M�
��W ,M� for the SU�2� model in the
quasi-one-dimensional geometry with transverse FBCs and M
=4,8 ,16,32,64. The solid curves are computed from the finite-size
scaling functions that follow. �c� Finite-size scaling analysis for the
data shown in �a� and �b�: The solid blue curves represent the scal-
ing functions for the network model with RBCs on node S in the
vicinity of the critical point Xl, at which we find ��RBC��Xl�
=1.49�0.02 and �=2.88�0.04. The red dashed curves represent
the scaling functions for the SU�2� model with FBCs in the vicinity
of the critical point Wc, at which we find ��RBC��Wc�=1.50�0.03
and �=2.85�0.06. The scaling functions are obtained from finite-
size scaling analysis incorporating corrections from a leading irrel-
evant scaling variable �Refs. 12 and 21�. The normalized localiza-
tion length �� is obtained from � by subtracting these corrections,
as defined in Eqs. �3.7� and �3.8� of Ref. 12. The distance to the
critical point �X−Xl� is rescaled by a factor c�1.7 in the scaling
function for the network model with RBCs so that it coincides with
that for the SU�2� model with FBCs.

BOUNDARY CRITICALITY AT THE ANDERSON… PHYSICAL REVIEW B 78, 115301 �2008�

115301-5



guishable as measured by normalized localization lengths
�4.2� and �4.3�, respectively. The same is true in a strip ge-
ometry provided the insulating side of the transition in the
network model is topologically trivial �i.e., has no helical
edge states� according to Eqs. �4.4� and �4.5�. However, the
strong asymmetry �Eq. �4.6�� hints at the possibility that
some boundary critical exponents might be sensitive to the
choice of transverse boundary conditions that dictates the
presence or absence of a delocalized Kramers doublet of
edge states.

V. BULK AND BOUNDARY CRITICALITY

A. Typical spatial profile of wave functions

To gain more insights into the criticality of the network
model, we study numerically the critical normalized wave
functions � when X=Xl in the geometries of Figs. 4�a� and
4�b�. To this end, the support of normalized wave functions
for the network model is defined on the midpoints �x ,y� of
every bond joining nearest-neighbor nodes; i.e., the normal-
ized wave function � can be viewed as a complex-valued
vector whose 8L2 components ���x ,y�, with the spin-1/2
quantum number labeled by �= ↑ ,↓, correspond to 4L2

freely propagating Kramers pairs of plane waves. The dy-
namics of such a wave function is governed by a unitary
evolution operator U built out of all scattering matrices at the
nodes of the network.22 For each realization of the disorder,
we numerically diagonalize U and retain one normalized
wave function whose eigenvalue is closest to 1. The number
of disorder realizations is 5�104 for each system size L �L
ranging from 20 to 80�. By tuning the parameter X=Xl at
each node, this normalized wave function is, with a slight
abuse of language, called critical.

First, we define

ln���2�x,L 
 �2L�−1�
y=1

2L

ln� �
�=↑,↓

����x,y��2� , �5.1�

where X is tuned to the critical point Xl for the network
model. The overbar denotes disorder averaging over the
nodes through the independently distributed angles � as well
as over the links through the independently and uniformly
distributed random phases of Kramers doublets.

Figure 10 shows the x dependence of ln���2�x,L for dif-
ferent values of L at the critical point Xl in the cylinder
geometry of Fig. 4�a�. The two figures correspond to differ-
ent RBCs in the x direction: �a� the boundaries passing
through the S nodes as in Fig. 3�b� and �b� the boundaries
passing through the S� nodes as in Fig. 3�a�. The boundary
bonds are located at x=1 and x=2L. At the critical point
between the metallic and the insulating states without helical
edge state �Fig. 10�a��, the dependence of ln���2�x,L on x is
symmetric about x=L, at which it reaches a maximum, and
reaches a minimum close to the boundaries. For comparison,
we show in Fig. 10�a� ln���2�x,L of the SU�2� model, in
which the on-site disorder strength W is tuned to the critical
point Wc, and the overbar in Eq. �5.1� denotes disorder aver-
aging over the on-site energies and the Haar measure of the
hopping matrix elements. We find no qualitative difference in

the dependence on x and L of ln���2�x,L between the two
models when the critical point separates a metal and an or-
dinary insulator. Remarkably, Fig. 10�b� shows that the de-
pendence on x of ln���2�x,L is nonmonotonic when ap-
proaching a boundary from the center of the bulk, x=L, and
that its absolute maximum is reached at the boundaries
x=1,2L instead of the local maximum at x=L.

B. Scaling exponents �q

This striking difference between Figs. 10�a� and 10�b�
suggests that the statistics of the critical normalized wave
functions is sensitive to the topological nature �i.e., the pres-
ence or absence of helical edge states� of the insulating state.
A powerful tool to study the statistics of critical normalized
wave functions is the multifractal scaling analysis.23 Multi-
fractality is encoded by a set of scaling exponents �anoma-
lous dimensions� �q

��� defined by the scaling laws

���r��2q/����r��2�q � L−�q
���

�5.2�

for L�1, where � is the normalized spinor obtained from
the network model in the geometry of Figs. 4�a� and 4�b� at
criticality X=Xl, and q is any real number. The index ���
distinguishes bulk, boundary, and corner exponents through
the choice of the location of r= �x ,y� relative to the bound-
aries and the nature of the boundaries.3,13,24–26 In this paper,

FIG. 10. �Color online� Dependence on the position x along the
cylinder axis of Fig. 4�a� of ln���2�x,L defined by Eq. �5.1� for the
values of L=20,25,30,35,40,50,60,80 from top to bottom with
�a� S boundaries or with �b� S� boundaries. The blue dashed curves
in �a� represent the normalized critical wave functions ln���2�x,L

for L=36,48,60,72,96,120 obtained from the SU�2� model de-
fined in Ref. 2 using the cylinder geometry of Fig. 4�a�.
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we distinguish six cases, ���= �2�, �1,Z2�, �1,O�, �0,Z2�,
�0,O�, and �0,Z2 �O�. Here the first entry in ��� refers to the
dimensionality of the support of wave functions. The second
entry in ���, Z2 or O �“ordinary”�, refers to the presence or
absence, on the insulating side of the critical point, of a
Kramers doublet �helical� edge state along a boundary or at a
corner where measurement �5.2� is made �see below for more
detailed definitions�.

In Eq. �5.2� the proportionality constant may have a de-
pendence on L that is much milder than the power law it
multiplies. This means that the scaling exponents �q

��� are
obtained from calculating numerically

Dq
����L� 


q ln���r��2 − ln���r��2q

ln L
�5.3�

first. Here, the double overbar means that in addition to the
disorder averaging a spatial average over the relevant sites r
�4L2 sites for the torus geometry, 2L sites for the boundary�
is also taken to improve the statistics. This is followed by a
linear fit of Dq

����L� as a function of 1 / ln L. Only system
sizes larger than L=35 are kept for the linear fit. At last, �q

���

is obtained as the intercept of the linear fit with the vertical
axis at 1 / ln L=0. For the case of boundary scaling expo-
nents, we also replaced ���r��2 with r a bond joining a node
on the boundary by averaging it over all bonds from the
elementary plaquette to which it belongs. This coarse grain-
ing is necessary to overcome the small oscillations that are
visible in the x dependence plotted in Fig. 10 close to the
boundaries. Figure 11 shows the q dependence of the scaling
exponents �q

��� for the network and the SU�2� model in dif-
ferent geometries.

The bulk scaling exponents, for which case ���= �2�, char-
acterize scaling law �5.2� in the torus geometry from Fig.
4�b� �which has no boundary�. This is also the case in the
cylinder geometry of Fig. 4�a�, if the distance from the site r
to the boundaries is of order L. The bulk exponents shown in
Fig. 11�a� are obtained with the torus geometry in order to be
free from boundary effects and to maximize the number of
sampling points r. Figure 11�a� shows that the bulk scaling
exponents �q

�2� of the network model are identical to those
obtained for the SU�2� model3 within their error bars.

The boundary scaling exponents are obtained by putting r
on the boundaries �with the coarse graining mentioned
above� in the cylinder geometry of Fig. 4�a�. There is an
important caveat however. As we saw in Secs. III and IV, the
network model supports two types of �straight� boundaries,
while the SU�2� model has only one. Indeed, for the network
model at X=Xl studied numerically in Fig. 11 we have two
cases:

�i� ���= �1,O�, when the boundary on which r is located
passes through the nodes of type S. To reduce statistical
errors, we take the cylinder geometry of Fig. 4�a� which
follows from imposing longitudinal PBCs in Fig. 3�b�. No
helical edge state exists on the boundaries in the insulating
phase at XXl.

�ii� ���= �1,Z2�, when the boundary on which r is located
passes through the nodes of type S�. To reduce statistical
errors, we take the cylinder geometry of Fig. 4�a� which

follows from imposing longitudinal PBCs in Fig. 3�a�. There
exists a helical edge mode on each boundary in the insulating
phase at XXl.

Figure 11�b� shows that the boundary scaling exponents
�q

�1,O� in the network model agree, within their error bars,
with the boundary scaling exponents obtained in Ref. 3 from
the SU�2� model in the cylinder geometry of Fig. 4�a�. Re-
markably, Fig. 11�c� shows a second set of boundary scaling
exponents �q

�1,Z2� in the network model, which is markedly
different from the first set of boundary scaling exponents
�q

�1,O� in Fig. 11�b�. To sum up, the three distinct sets of
scaling exponents �q

�2�, �q
�1,O�, and �q

�1,Z2� are identified from
Figs. 11�a�–11�c�, respectively.

The emerging picture is that the network and the SU�2�
models at criticality share common bulk scaling exponents
�q

�2� and a set of boundary scaling exponents �q
�1,O� at an

ordinary boundary that does not support a helical edge mode
in the neighboring insulating phase. Only the network model
has one more set of boundary scaling exponents �q

�1,Z2� at a
boundary that has a helical edge mode in the insulating
phase.

FIG. 11. �Color online� The dependences on q of �q
��� / �q�1

−q�� ��� when X=Xl for �a� the bulk: ���= �2�; �b� the S boundary:
���= �1,O�; and �c� the S� boundary: ���= �1,Z2�. The solid lines
represent �����q�−2 evaluated at q=0 according to Eq. �5.4a� with
its error bars indicated by dashed lines. The dependences on q of
�q

��� / �q�1−q�� for the SU�2� model in the bulk and on the boundary
are shown with � in �a� and �b�, respectively. The blue open circles
in �c� show the q dependence of �1−q

�1,Z2� / �q�1−q��.

BOUNDARY CRITICALITY AT THE ANDERSON… PHYSICAL REVIEW B 78, 115301 �2008�

115301-7



C. f(�) spectra

There is yet another set of scaling exponents f ��������� that
we have calculated for the SU�2� and network models. These
exponents are calculated numerically from the scaling An-
sätze

���r��2qln���r��2

���r��2q
� − �q

��� ln L �5.4a�

and

ln���r��2q � �f �����q
���� − �q

���q − d����ln L , �5.4b�

where d���=2 and 1 for the bulk and boundary exponents,
respectively. It can be shown that the Legendre
transform3,13,24–26

f ��������� 
 ����� − 2�q − �q
��� + d���, �5.5a�

where q is a function of ���� obtained from inverting

�����q� − 2 
 d�q
���/dq , �5.5b�

relates scaling exponents �5.2�, �5.4a�, and �5.4b�. The num-
ber f ��������� is the fractal �i.e., Hausdorff27� dimension of
the set of points r such that ���r��2 scales as L−����

.
The dependence on ���� of f ��� for the critical network

model at X=Xl in the torus, ���= �2�; in the cylinder geom-
etry with S boundaries �Fig. 3�b��, ���= �1,O�; and in the
cylinder geometry with S� boundaries �Fig. 3�a��,
���= �1,Z2�, are shown in Fig. 12�a�, which are obtained by
combining �q

��� in Fig. 12�b� and fq
��� in Fig. 12�c�. We see

that there are three distinct multifractal spectra at the critical
point Xl: f �2� for the bulk, f �1,O� for the S cylindrical geom-
etry, and f �1,Z2� for the S� cylindrical geometry. They are
compared with the multifractal spectra for the SU�2� model
in the torus and cylinder geometry obtained in Ref. 3. Within
their error bars, they agree with f �2� and f �1,O�, respectively.
The exponent �q

��� at q=0 is closely related to Eq. �5.1� with
x chosen in the bulk or on a boundary. For the network
model we find the values

�0
�2� = 2.174 � 0.001, �5.6a�

�0
�1,O� = 2.420 � 0.005, �5.6b�

�0
�1,Z2� = 2.086 � 0.015. �5.6c�

The inequality �0
�1,Z2�	�0

�2�	�0
�1,O� is consistent with the x

dependence seen at the boundaries in Fig. 10, as wave func-
tions near S� boundary in the S� cylindrical geometry are
expected to be more extended because of the existence of
edge modes in the insulating side. We note that the error bars
are an order of magnitude larger for �0

�1,Z2� because of the
presence of larger finite-size corrections. Within their error
bars, values �5.6a� and �5.6b� agree with the ones for the
SU�2� model in the bulk and boundaries,3,4 respectively.

It is worth mentioning that the multifractal analysis per-
formed here involves extracting scaling exponents after per-
forming the disorder averaging. Extracting scaling exponents
before performing the disorder averaging yields typical scal-

ing exponents. Typical scaling exponents need not be identi-
cal to average scaling exponents calculated here.28–30 The
average scaling exponents �q

��� are expected to differ from
the typical ones for any values of q such that f ��������� is
negative;31 see Fig. 12�c�. For this range of q, rare events
dominate the calculation of �q

��� as evidenced by the larger
error bars in Fig. 11. This explains the systematic deviations
from the mirror symmetry32 about q=1 /2 of �q

��� / �q�q−1��
for large q in Fig. 11.

The rationale for studying these average scaling expo-
nents is that they are expected to be the scaling dimensions
of some primary operators representing the moments of
wave-function amplitudes in an underlying two-dimensional
conformal field theory.33 Knowing them constrains the pos-
sible field theories that can encode critical properties of an
Anderson transition.

VI. CORNER MULTIFRACTALITY

So far we have always considered geometries of the net-
work model with boundaries of the same type, as in Figs.

FIG. 12. �Color online� �a� Dependences on ���� of the multi-
fractal spectra f ��� in the bulk ���= �2� ���, at the S boundaries
���= �1,O� ���, and at the S� boundaries ���= �1,Z2� ���, at X
=Xl. Dependences on q of �q and fq are shown in �b� and �c�,
respectively, with the same symbols as in �a�. The bulk and bound-
ary multifractal spectra for the SU�2� model defined in Ref. 2 are
shown as solid and dashed curves, respectively.
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3�a� and 3�b�. We are now going to investigate the case of
mixed boundaries.

We begin with the network model in the quasi-one-
dimensional geometry �quantum wire geometry� from Fig.
3�c�, for which we show that the Landauer conductance
obeys a statistical distribution that differs from that of an
ordinary symplectic quantum wire, i.e., a symplectic quan-
tum wire in a geometry compatible with transverse PBCs. A
physical realization of this case is given by metallic carbon
nanotubes with spatially smooth disorder potential. As
shown by Ando and Suzuura,34 in the absence of intervalley
scattering by disorder, conduction of electronic states near a
Fermi point is described by transfer matrices in the symplec-
tic class with an odd number of conduction channels. A
mathematical treatment of such conduction process was ini-
tiated by Zirnbauer18 and further developed by Takane.19

We then turn our attention to a semi-infinite geometry
with two-point contacts to ideal reservoirs attached at the
interface between the boundary of type S and of type S� as
shown in Fig. 13�a�. After tuning the network model to criti-
cality, we shall see that this amounts to studying corner mul-
tifractal scaling exponents whose values differ from those
taken by the corner multifractal scaling at the corner along a
homogeneous segment of a boundary; see Fig. 13�b�. Com-
mon to both examples of mixed boundaries is the existence
of a single perfectly conducting channel.

A. Quasi-one-dimensional wire with mixed transverse open
boundary conditions

In the quasi-one-dimensional wire depicted in Fig. 3�c�,
whereby the length of the disordered region N is larger than
the mean free path ��1, one transmission eigenvalue is al-
ways unity for any disorder configuration, while the other
2M eigenvalues are exponentially small with N. This follows
from applying the results from Refs. 19 and 34. The same is
true of the thick quantum wire limit N ,M→
 with the ratio
M� /N held fixed, as it is now the analysis from Ref. 18 that
can be borrowed.

The persistence of the unit eigenvalue of the transmission
matrix is unique to the network model with mixed boundary
conditions. This remarkable property can be understood
physically as follows: Because of the mixed boundaries, one
and only one edge supports a single Kramers doublet of edge
states. This Kramers doublet of edge states is free to propa-
gate along the edge and thus provides a single perfectly con-
ducting channel. This physics is indeed realized with helical
edge modes of a two-dimensional quantum spin Hall insula-
tor and a metallic carbon nanotube in the absence of inter-
valley scattering. Mathematically, the transfer matrix M for
the geometry of Fig. 3�c� is a member of the group
SO��4M +2�.12 The eigenvalues of ln�MM†� are symmetri-
cally distributed around 0 and denoted by �2xi �0�x1�x2
� ¯ �x2M+1�. In turn, the transmission eigenvalues Ti are
written as Ti=1 /cosh2 xi �i=1,2 , . . . ,2M +1�. Because of the
Kramers degeneracy, the eigenvalues of ln�MM†� are two-
fold degenerate. This leads to the conclusion that there must
be a null eigenvalue x1=0; thereby T1=1.

B. Two-point contacts on a boundary of mixed type

Next, we consider the case of a semi-infinite network
model with a boundary that is mixed, whereby it is necessary

to attach two-point contacts �leads� at the two interfaces be-
tween the boundary nodes of types S and S� in order to
maintain TRS. This setup is shown in Fig. 13�a�. The scat-
tering matrix that relates incoming to outgoing waves from
the leads is then a 2�2 matrix. The constraint that it belongs
to the symplectic symmetry class forces this matrix to be
proportional to the unit 2�2 matrix up to an overall �ran-
dom� phase. Hence, the two-point conductance is always
unity no matter how far apart the two-point contacts are. An
incoming Kramers doublet is transmitted with a probability
of 1 through the disordered region in Fig. 13�b�. This result
may be related to the presence of a perfect transmission
channel in the geometry of Fig. 3�c� by thinking of a confor-
mal mapping that transforms a half plane with mixed bound-
aries to an infinite strip with mixed boundaries.

Before proceeding with the case at hand, we recall that it
is expected on general grounds that the moments of the two-
point conductance in a network model at criticality, when the
point contacts are far apart, decay as power laws with scaling
exponents proportional to the scaling exponents �q

���.35 Con-
sequently, after tuning the semi-infinite network model to
criticality, the zero-dimensional boundary scaling exponents

FIG. 13. �Color online� �a� A semi-infinite geometry with two-
point contacts �green dot-dashed curves� attached at the two inter-
faces between different types of boundaries. Each line or curve
represents a Kramers doublet. �b� Closed network with mixed
boundaries. The thick wavy and solid lines on the edges represent
two different types of boundaries, with and without a helical edge
mode at XXl, respectively.
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for the moments of ���r��2 with r at an interface of different
types of boundaries,

�q
�0,Z2�O� = 0, �6.1�

emerge as a signature of the nontrivial topological nature of
the insulating side at the Anderson transition. We conjecture
that if a description of the critical point exists in terms of a
conformal field theory, exponents �6.1� might then be ob-
tained from the correlation functions between the moments
of the local operator encoding the local density of states and
additional insertions of a boundary condition changing
operator.36

The zero-dimensional multifractal scaling exponents �Eq.
�6.1�� are different from the corner multifractal scaling expo-
nents which characterize the scaling of the moments of wave
functions at a corner with the boundary of a given type, such
as the upper left corner and the lower right corner in Fig.
13�b�. These corner multifractal exponents read

�q
�0,O� = 2�q

�1,O� �6.2�

or

�q
�0,Z2� = 2�q

�1,Z2�, �6.3�

depending on the type of the boundary and the critical point
to which the network model has been tuned. Here, Eqs. �6.2�
and �6.3� follow from a general relation based on two-
dimensional conformal mappings that relates the scaling ex-
ponents �5.2� with r at the corner between two straight
boundaries meeting to the angle � /2 and the scaling expo-
nents �5.2� with r along a straight boundary.3

VII. CONCLUSIONS

We have shown that the boundary multifractal spectra for
the critical normalized wave functions are sensitive to the
choice of boundary conditions at the Anderson transition in
the two-dimensional symplectic class. This is the first ex-
ample where boundary multifractal exponents are calculated
under different boundary conditions in the problem of Ander-
son localization-delocalization transition. It would be inter-
esting to look for other examples of disorder-induced con-
tinuous phase transitions at which boundary critical
properties depend on boundary conditions but bulk critical
properties do not.

We conjecture that the two-dimensional conformal theory
describing the Anderson transition in the two-dimensional
symplectic universality class, if it exists, should be compat-
ible with two distinct conformally invariant boundary condi-
tions on the boundary of a half plane, thereby yielding two
distinct sets of boundary multifractal exponents �q

�1,O� and
�q

�1,Z2�. The recent observation of the QSH effect in HgTe/
�Hg,Cd�Te quantum wells8 suggests that it might be possible
to probe experimentally the Kramers degenerate edge states
at criticality and the corresponding boundary multifractal
spectra.
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